
Microservices Recipes

Eberhard Wolff

Microservices Recipes

Eberhard Wolff

© 2018 - 2019 Eberhard Wolff

Also By Eberhard Wolff
Microservices Primer

Microservices - Ein Überbli

Microservices Rezepte

Microservices - A Practical Guide

Domain-Driven Design Referenz

http://leanpub.com/u/ewolff
http://leanpub.com/microservices-primer
http://leanpub.com/microservices-ueberblick
http://leanpub.com/microservices-rezepte
http://leanpub.com/practical-microservices
http://leanpub.com/ddd-referenz

Contents

Introduction . 1
Anowledgement . 1

Basics: Microservices . 3
Independent Systems Aritecture (ISA) Principles . . . 3
Terms . 3
Principles . 3
Reasons . 5
Self-contained Systems 6
Conclusion & Outlook . 7

Concept: Frontend Integration 9
Why Frontend Integration? 9
Recipe: ESI (Edge Side Includes) 10
Alternative Recipes: Links and JavaScript 14
Conclusion . 16
Experiments . 16

Concept: Asynronous Microservices 17
Definition . 17
Why Asynronous Microservices? 18
Recipe: Messaging with Kaa 18
Alternative Recipe: REST with Atom 21
Conclusion . 23
Experiments . 23

CONTENTS

Concept: Synronous Microservices 25
Definition . 25
Why Synronous Microservices? 25
Challenges . 26
Recipe: Kubernetes . 27
Alternative Recipes: Netflix, Consul, Cloud Foundry . . 31
Conclusion . 34
Experiments . 34

What next? . 35

Introduction
is broure introduces the termsmicroservice and self-contained
system. It continues with an overview of different concepts and
recipes for the implementation ofmicroservices.e recipemetaphor
expresses that the text describes ea approa in practical terms.
For ea recipe one example implementation is provided. Readers
must combine several recipes for their projects, as they would need
to do for the menu of a multi-course meal. And finally, there are
variations and alternatives for every recipe. Experiments invite you
to get hands-on experience with the examples.

e code for the examples can be found on Github. ere is also
an overview¹, whi briefly explains all the demos in this broure
and a few additional ones.

A detailed presentation of the recipes and other concepts around
microservices can be found in the book Microservices - A Practical
Guide².

Acknowledgement

I would like to thank everyone with whom I discussed microser-
vices, who asked me questions or worked with me. ere are far
too many to name them all. e discussions help a lot and are a lot
of fun!

Many of the ideas and also the implementations are unthinkable
without my colleagues at INNOQ.

¹http://ewolff.com/microservices-demos.html
²http://practical-microservices.com/

http://ewolff.com/microservices-demos.html
http://practical-microservices.com/
http://practical-microservices.com/
http://ewolff.com/microservices-demos.html
http://practical-microservices.com/

2 Introduction

Special thanks go to Jörn Hameister for the extensive feedba on
the German edition of this broure!

Basics: Microservices
Unfortunately, there is no generally agreed on definition of the term
“microservice”. So this broure will first explain the basic ideas
behind microservices.

Independent Systems Architecture
(ISA) Principles

ISA³ (Independent Systems Aritecture) is a collection of basic
principles for microservices. It is based on experiences collected
with microservices in many different projects.

Terms

In the principles the term must is used for principles that have to
be strictly adhered to. Should describes principles that have many
advantages, but do not necessarily have to be complied with.

e ISA principles speak of a system.e IT landscape of a company
consists of many systems. Every system can work with a different
aritecture and can therefore be implemented based on different
principles.

Principles

1. e system must be divided into modules whi offer inter-

³http://isa-principles.org

http://isa-principles.org/
http://isa-principles.org/

4 Basics: Microservices

faces. Access to other modules is only possible through these
interfaces. Modules must therefore not be directly dependent
on the deployment details of another module, for example,
the data models in the database.

2. Modules must be separate processes, containers or virtual
maines to maximize independence.

3. e system must have two clearly separated levels of ari-
tectural decisions:

• e macro aritecture includes decisions that affect all
modules.

• e micro aritecture comprises those decisions that
can be made differently for ea module.
All other principles from point 4 onwards are part of the
macro aritecture.

4. e oice of integration options must be limited and stan-
dardized for the system. e integration can use synronous
or asynronous communication and / or it can take place at
the frontend level.

5. Communication must be limited to a set protocols like REST
or messaging implementations like Kaa. Also metadata, e.g.
for authentication, must be standardized.

6. Ea module must have its own independent continuous
delivery pipeline. Tests are part of the continuous delivery
pipeline. erefore, the tests of the modules must be inde-
pendent.

7. Operations should be standardized. is includes configu-
ration, deployment, log analysis, tracing, monitoring and
alarms. ere may be exceptions to the standard when a
module has very specific requirements.

8. Standards for operation, integration or communication should
be defined on the interface level. e protocol can be stan-
dardized as REST, and data structures for the communication
can be standardized. But ea module should be free to use a
different REST library.

5

9. Modules must be resilient.eymust not fail if other modules
are not available or communication problems occur. It must
be possible to stop a module and start it in a different
environment (servers, networks, configuration, etc.) without
losing data or other state.

Reasons

ISA shows that microservices are a way of modularization (princi-
ple 1). So ideas like information hiding⁴ or high cohesion⁵ / low
coupling are also applicable to microservices. e difference to
traditional modules is the implementation as a separate container
(principle 2). is allows more freedom in the tenical implemen-
tation of the modules. However, the modules are still part of a
system, so in the end the freedom must be limited accordingly
(principle 3). Consequently, integration (principle 4) and communi-
cation (principle 5) have to be standardized because otherwise there
will be no system but rather separate isolated islands.

Independent deployment is an advantage of microservices and
can only be ensured if ea microservice has its own continuous
delivery pipeline (principle 6).

Standardization (principle 7) facilitates operations, especially in
the face of a large number of microservices. But the standards
must not restrict the freedom of tenology and therefore should
only define the interface (principle 8). A microservices system will
maybe not use many different tenologies from the beginning,
but you should keep the opportunity open to be well prepared for
further development. In the long run, new tenologies will appear
on the market, and it is advantageous if the system can use them.

A microservices system is a distributed system. at increases the
likelihood of failure of servers, the network or a microservice.

⁴https://en.wikipedia.org/wiki/Information_hiding
⁵https://en.wikipedia.org/wiki/Cohesion_%28computer_science%29

https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Cohesion_(computer_science)

6 Basics: Microservices

erefore, resilience (principle 9) is essential. Also, resilience allows
microservices to be moved to a different environment. at is an
advantage if the system runs in a cluster.

us, the ISA principles provide a good basis for a microservices
system.

Self-contained Systems

e ISA principles define important principles for microservices,
but they do not cover all decisions and features. For example,
organization, domain aritecture and the question whether mi-
croservices should contain a UI or not are not discussed.

Self-contained systems (SCSs) are an approa tomicroservices that
has already proven itself inmany projects. All essential information
on SCSs can be found on the website http://scs-architecture.org/.
Here is an overview of the most important aracteristics:

• Ea SCS is an autonomous web application. e code for the
web interface is included in the SCS. us, a user can use one
SCS without relying on other SCSs.

• SCSs are not allowed to share a UI. Aer all, an SCS should
be used via its own UI.

• An SCS can have an optional API. But the API is not strictly
necessary, since the SCS already has a web interface for the
user. For mobile clients or other SCSs, access via an API
maybe useful.

• e SCS contains data and logic. A new feature typically
requires anges to UI, logic, and data. All these anges can
be done in a single SCS.

• For one SCS exactly one team is responsible. However, a team
can be in arge of more than one SCS.

http://scs-architecture.org/

7

• To avoid tight coupling, SCSs should not share business code.
Only the sharing of common tenical code is allowed. As a
rough rule: Only code that would be published as open source
might be shared between SCS.

• To further decouple the SCS, the SCS should not share infras-
tructure, for example, no shared database should be used. For
cost reasons, compromises can be made.

• e communication between SCSs is prioritized:
– Frontend integration has the highest priority.
– is is followed by asynronous communication
– and finally, synronous communication is also possible.
e focus is on decoupling and resilience. e higher-
priority types of communication help to aieve these
goals.

As mentioned, the SCS idea has already proven itself in many
projects. e links on the website⁶ give an impression of some of
these projects. e approa is only usable for web applications,
since every SCS has a web interface. However, the separation into
systems that implement part of the business logic and are developed
by one team, is also sensible for other types of systems.

Conclusion & Outlook

ISA defines the principles all microservices systems should comply
with while SCS defines best practices that have been used success-
fully in many projects.

e following apters describe tenical recipes for the communi-
cation between microservices in the order of priorities suggested
by SCS: frontend integration, asynronous communication and
finally, synronous communication.

⁶http://scs-architecture.org/links.html

http://scs-architecture.org/links.html
http://scs-architecture.org/links.html

Concept: Frontend
Integration

Microservices can include a web frontend. Self-contained systems
(SCSs) even must have a web frontend. erefore, microservices
can be integrated at the frontend.

Why Frontend Integration?

Frontend integration creates loose coupling. If links are used for the
integration, only the URL has to be known by the other system.
What is behind the URL and how the information is presented can
be anged without affecting the system that displays the URL in a
link.

Another benefit of frontend integration is the freeoice of frontend
tenologies. Especially with frontend tenologies, there are lots of
innovations. Constantly, there are new JavaScript frameworks and
new ways to design aractive user interfaces (UIs). An important
advantage of microservices is the freedom of tenology. Every mi-
croservice can oose its own tenologies. If tenology freedom
should also apply to the frontend, then every microservice must
contain its own frontend, potentially using a different frontend
tenology. For this, the frontends of the microservices must be
integrated so that the frontends appear to be part of a single system.

anks to frontend integration, the entire functionality for a do-
main is implemented in a single microservice. For example, a
microservice might be responsible for displaying receivedmessages
even if the display of the messages is integrated in the UI of another
microservice. If more information, su as a priority of the message,

10 Concept: Frontend Integration

should be displayed, the anges to the logic, the data management
and the presentation can be implemented by anging only one
microservice even if anothermicroservice displays that information
in its UI.

Recipe: ESI (Edge Side Includes)

ESI⁷ (Edge Side Includes) integrates HTML fragments of a mi-
croservice with fragments of other microservices. For this, the
microservice generates HTML, whi contains ESI tags.e ESI im-
plementation evaluates the ESI tags and includes HTML fragments
of others microservices.

ESI is mainly implemented by caes. By spliing the HTML pages,
static fragments can be caed even if they are integrated into
a dynamic website. CDNs (Content Delivery Networks) can also
implement ESI. CDNs are actually used to deliver static HTML
pages and images. For this, CDNs operate server nodes on the
internet, allowing pages and images to be loaded from a server
nearby for every user and reducing the load times. With ESI, the
CDNs can at least cae fragments of dynamic pages.

ESI: Composing HTML fragments to HTML pages

⁷https://www.w3.org/TR/esi-lang

https://www.w3.org/TR/esi-lang
https://www.w3.org/TR/esi-lang

11

us, ESI composes an HTML page from several HTML fragments,
whi can be supplied by various microservices.

An example of an ESI integration is available at https://github.com/
ewolff/SCS-ESI. ere is also a guide how to run the example⁸.

In the example, ESI integration is used to integrate fragments of
a common microservice into the web pages of other microser-
vices. e example contains only one implemented microservice,
the order microservice. e order microservice is a Spring Boot
application and wrien in Java while the common microservice is
wrien in Go. It shows that even very different tenologies can be
integrated in the frontend.

Listing 1: HTML output by the Order Microservice

1 <html>

2 <head>

3 ...

4 <esi:include src="/common/header"></esi:include>

5 </head>

6

7 <body>

8 <div class="container">

9 <esi:include src="/common/navbar"></esi:include>

10 ...

11 </div>

12 <esi:include src="/common/footer"></esi:include>

13 </body>

14 </html>

e Order Microservice returns an HTML page as shown in listing
1. Su a page is available at http://localhost:8090/ when the Doer
container runs on the local computer. If you look at this page in the
browser, you see that the browser does not interpret the ESI tags, it
rather displays a garbled web page.

⁸https://github.com/ewolff/SCS-ESI/blob/master/HOW-TO-RUN.md

https://github.com/ewolff/SCS-ESI
https://github.com/ewolff/SCS-ESI
https://github.com/ewolff/SCS-ESI/blob/master/HOW-TO-RUN.md
http://localhost: 8090/
https://github.com/ewolff/SCS-ESI/blob/master/HOW-TO-RUN.md

12 Concept: Frontend Integration

e example uses the web caeVarnish⁹ as an ESI implementation.
e commonmicroservice provides the content for the ESI tags.e
Varnish runs at http://localhost:8080/ when the Doer container
runs on the local computer. Listing 2 shows the HTML that Varnish
returns.

Listing 2: Varnish’s HTML output

1 <html>

2 <head>

3 ...

4 <link rel="stylesheet"

5 href="/common/bootstrap-3.3.7/bootstrap.css" />

6 <link rel="stylesheet"

7 href="/common/bootstrap-3.3.7/bootstrap-theme.css" />

8 </head>

9

10 <body>

11 <div class="container">

12 <a class="brand"

13 href="https://github.com/ultraq/thymeleaf-layout-dia\

14 lect">

15 Thymeleaf - Layout

16 Mon Sep 18 2017 17:52:01 </div></div>

17 ...

18 </div>

19 <script

20 src="/common/bootstrap-3.3.7/bootstrap.js" />

21 </body>

22 </html>

As you can see, the common microservice adds headers and footers
as well as a navigation bar. e common microservice also imple-
ments a kind of asset server: It makes shared libraries like Bootstrap
available.

⁹https://varnish-cache.org/

https://varnish-cache.org/
http://localhost:8080/
https://varnish-cache.org/

13

If a new version of Bootstrap should be used, only the HTML frag-
ment in the common microservice must be anged and the new
Bootstrap version must be provided by the common microservice.
However, in a productive system this is hardly sufficient because
the user interface of the order microservice needs to be tested with
the new Bootstrap version.

Caching and Resilience

Because the system uses a Varnish cae, the HTML fragments are
caed for 30 seconds. at can be seen by looking at the time in
the navigation bar, whi anges only every 30 seconds. If one
of the microservices fails, the time for caing is even extended to
15 minutes. e configuration for Varnish can be found in the file
default.vcl in the directory docker/varnish/ in the example.

So the Varnish cae improves not just the performance of the
system, but also the resilience because the system still works at least
for 15 minutes even if the microservices fail.

With server-side integration the whole HTML page with all frag-
ments is always sent to the client. In the example, in fact all
fragments of the page need to be present: Without the frame and
the Bootstrap library the page is not really usable. An optional
information su as the number of items in the shopping cart does
not necessarily have to be integrated with ESI.

Alternative: Server-Side Includes (SSI)

Another option for server-side frontend integration is SSI¹⁰ (Server-
side Includes). is is a feature that most web servers provide.
Here, for the integration the Varnish cae is replaced by a web
server. is has the advantage that a web server may already
be installed for example for TLS / SSL termination. In that case,
the additional effort for server-side integration is mu lower

¹⁰https://en.wikipedia.org/wiki/Server_Side_Includes

https://en.wikipedia.org/wiki/Server_Side_Includes
https://en.wikipedia.org/wiki/Server_Side_Includes

14 Concept: Frontend Integration

because no additional soware needs to be installed. However, the
advantages of the cae concerning performance and resilience are
lost. https://scs-commerce.github.io/ is an example of a system that
uses SSI with nginx for frontend integration.

Alternative Recipes: Links and
JavaScript

e Crimson Assurance example uses a completely different ap-
proa to frontend integration. e example was created as a
prototype for a German insurance to show how a web application
with frontend integration can be implemented. e two INNOQ
consultants Lucas Dohmen and Marc Jansing implemented this
example.

Integration with Links and JavaScript

is example is available on the internet¹¹. You can also run the
example on your own laptop as a set of Doer containers provided
by a project onGithub¹². A guide¹³ explains how to run the example.

is example implements an application for a clerk at an insurance.

¹¹https://crimson-portal.herokuapp.com/
¹²https://github.com/ewolff/crimson-assurance-demo
¹³https://github.com/ewolff/crimson-assurance-demo/blob/master/HOW-TO-RUN.md

https://scs-commerce.github.io/
https://crimson-portal.herokuapp.com/
https://github.com/ewolff/crimson-assurance-demo
https://github.com/ewolff/crimson-assurance-demo/blob/master/HOW-TO-RUN.md
https://crimson-portal.herokuapp.com/
https://github.com/ewolff/crimson-assurance-demo
https://github.com/ewolff/crimson-assurance-demo/blob/master/HOW-TO-RUN.md

15

e main application crimson-portal has links to the applica-
tions for writing leers crimson-letter, for reporting damage
crimson-damage and the REST baend simulator crimson-backend.
ese links use parameters to pass information like the contract ID
to the other applications.

Only for the integration of the postbox an additional client-side
integration is implemented in about 50 lines of JavaScript. So the
postbox can also be included in the main page of the portal.

All of the applications have a consistent look & feel that is sup-
ported through shared assets in the project crimson-styleguide.
e assets are integrated into the projects as a library during the
build.

is example shows how far you can get with a simple integration
with links. In addition, this example also illustrates the integration
of very different systems: e main application, leer and damage
are implemented with NodeJS, while the postbox is implemented
with Java and Spring Boot.

Another example of client-side integration is https://github.com/
ewolff/SCS-jQuery. It implements a very simple client-side inte-
gration with JavaScript. From a user perspective the example is
identical to the ESI example.

Both projects use links. e linked pages will be transcluded into
the original page through JavaScript. Even if the JavaScript can not
be executed because there is an error in the code or the linked page
is not available, the system still works: It just displays a link instead
of the messages in the postbox.

Because client-side integration is implemented in jery in both
examples, ea system must integrate this JavaScript library in a
version that works with that integration. is leads to a restric-
tion of the tenology freedom. An implementation with pure
JavaScript would be beer in this regard.

https://github.com/ewolff/SCS-jQuery
https://github.com/ewolff/SCS-jQuery

16 Concept: Frontend Integration

Conclusion

Frontend integration leads to a very loose coupling. In many cases,
links are sufficient. In this case, the systems only need to know
the URLs of the linked pages. If a web page is to be composed of
fragments from different systems, then the necessary integration
can take place on the server. If a cae is installed, ESI can be
used.e cae allows HTML fragments to be caed.at benefits
performance and resilience. Web servers can implement SSI. If a
web server is already in use, then the additional infrastructure of
a cae can be avoided. Finally, a client-side integration can load
optional content, su as the overview of the postbox.

Experiments

• Start the ESI example. Please refer to https://github.com/
ewolff/SCS-ESI/blob/master/HOW-TO-RUN.md.

• Look at the output of the Varnish cae at http://localhost:
8080/ and compare it to the output of the order microservice
at http://localhost:8090/. Take a look at the source code of
the returned HTML pages with your browser. How can you
access the HTML fragments of the common microservice?

• Try the user interface. Stop themicroserviceswith docker-compose
up --scale common=0 or docker-compose up --scale order=0.
Whi microservices are still usable?

https://github.com/ewolff/SCS-ESI/blob/master/HOW-TO-RUN.md
https://github.com/ewolff/SCS-ESI/blob/master/HOW-TO-RUN.md
http://localhost:8080/
http://localhost:8080/
http://localhost:8090/

Concept: Asynchronous
Microservices

Microservices can exange messages. Asynronous communica-
tion allows loose coupling and good resilience.

Definition

Asynronous microservices differ from synronous microser-
vices. e next apter describes synronous microservices in
detail. e term “synronous microservices” means the following:

A microservice is synronous if it makes a request to
other microservices and waits for the result while it is
processing requests.

Asynronous microservices do not wait for responses from other
systems while they are processing a request themselves. ere are
two ways to do this:

• e microservice does not communicate with other systems
while processing a request. In this case, the microservice will
typically communicate with the other systems at a different
time. For example, the microservice can replicate data that is
used when processing a request. us, customer data can be
replicated in order to access the locally stored customer data
when processing an order.

• emicroservice sends a request to another microservice, but
does not wait for a response. Amicroservice for processing an

18 Concept: Asynronous Microservices

order can send a message to another microservice that creates
the invoice. An response to this message is not necessary and
therefore does not have to be waited for.

Why Asynchronous Microservices?

Asynronous microservices have several advantages:

• If a communication partner fails, the message is still trans-
mied once the communication partner is available again.
So asynronous communication provides resilience, i.e, a
protection against the failure of parts of the system.

• e transmission and processing of a message can almost
always be guaranteed: e messages are stored. At some
point they will be processed. e fact that they are processed
can for example be ensured by the recipient anowledging
the message.

• Asynronous microservices can implement events. Events
provide beer decoupling. For example, an event could be
“order received”. Ea microservice can decide for itself how
it reacts to the event. For example, one microservice can cre-
ate an invoice and another can initiate delivery. If additional
microservices are added e.g. for a bonus program, they only
have to respond appropriately to the existing event. So the
system is very easy to extend.

Recipe: Messaging with Kafka

Kaa is an example of message-oriented middleware (MOM). A
MOM sends messages and ensures that the messages arrive at
the recipient. MOMs are asynronous. So you do not implement
a request / reply approa as with synronous communication
protocols but only send messages.

19

Basic Kafka Concepts

Kaa¹⁴ differs from other MOMs mainly in the fact that it perma-
nently stores the messages it transmits instead of discarding them
aer transmission.

e main concepts of Kaa are:

• ere are three APIs: the producer API for sending data, the
consumer API for receiving data and the streams API to
transform the data.

• Kaa organizes data in records. ey contain the transmied
data as value. Records also have a key and a timestamp.

• Topics contains records. Usually, records of a certain kind are
sent as part of a topic.

• Topics are divided into partitions. When a producer creates a
new record, the record is appended to a partition of the topic.
e distribution of records to partitions is implemented by
the producer and usually based on the key of the record.

• Kaa stores the offset for ea consumer in ea partition.
is offset indicates whi record the consumer last read
in the partition. If a consumer has processed a record, the
consumer can commit a new offset. For every consumer
Kaa only needs to store the offset in ea partition whi
is relatively lightweight.

• In a consumer group there is exactly one consumer for ea
partition. is ensures that a record is processed by only
one consumer: e record is stored in a partition, whi is
processed by one consumer thanks to the consumer group.

• Log compaction is a meanism that can be used to delete old
records: Â Â If there are multiple records with the same ID,
a log compaction deletes all of these records except the last
one. is can be used to remove events that are superseded
by newer events.

¹⁴https://kafka.apache.org/

https://kafka.apache.org/
https://kafka.apache.org/

20 Concept: Asynronous Microservices

Kaa can be operated in a cluster to provide reliability and scala-
bility.

The Kafka Example

e example can be found at GitHub¹⁵. e guide¹⁶ contains an
extensive documentation that explains step by step how to install
and start the example.

Overview of the Kafka example

If the Doer containers run on the local maine, the web ap-
plication is available at http://localhost:8080/. e web interface is
served by an Apae hpd web server acting as a reverse proxy. It
forwards the HTTP requests to the microservices.

Split of the Example into Microservices

e system consists of a microservice order, whi accepts orders
via the web interface. e order microservice then sends the order
data as a record via Kaa to the shipping microservice and the
invoicing microservice. e order is transferred as JSON. Because
of JSON’s flexibility, the invoicing microservice and the shipping
microservice can read just the data that is relevant for the respective
microservice from the JSON data structure.

¹⁵https://github.com/ewolff/microservice-kafka
¹⁶https://github.com/ewolff/microservice-kafka/blob/master/HOW-TO-RUN.md

https://github.com/ewolff/microservice-kafka
https://github.com/ewolff/microservice-kafka/blob/master/HOW-TO-RUN.md
http://localhost:8080/
https://github.com/ewolff/microservice-kafka
https://github.com/ewolff/microservice-kafka/blob/master/HOW-TO-RUN.md

21

All the shipping microservice instances and all the invoicing mi-
croservice instances are ea organized in a consumer group. is
means that the records for the orders are load balanced over all
consumers, but ea record is sent to just one consumer. is
ensures that only one invoicing microservice writes an invoice for
an order and only one shipping microservice delivers the goods.

e shipping microservice and the invoicing microservice store the
information from the records in their own database semas. All
microservices use the same Postgres database.

Ea Kaa record contains an order. e key is the ID of the order
with the suffix created, for example 1created.

Avro: An Alternative Data Format

An alternative data format is Avro¹⁷. It provides a binary protocol
but also a JSON representation. Avro can define a sema for the
data. It is also possible, for example with default values, to convert
data from an old version of the sema to a new version of the
sema. is allows old events to be processed even if the sema
has anged in the meantime.

Alternative Recipe: REST with Atom

Asynronous microservices can also be implemented with REST.
For example, it is possible to provide orders as an Atom Feed¹⁸.
Atom is a data format originally developed to make blogs available
to readers. Just as a new entry in an Atom document is created for
ea new blog post, the same is possible for every new order. A
client must then periodically poll the Atom document and process
new entries. at’s not very efficient. It can be optimized by HTTP
caing. en data will only be transferred if there are really new

¹⁷http://avro.apache.org/
¹⁸https://validator.w3.org/feed/docs/atom.html

http://avro.apache.org/
https://validator.w3.org/feed/docs/atom.html
http://avro.apache.org/
https://validator.w3.org/feed/docs/atom.html

22 Concept: Asynronous Microservices

entries. Pagination can also ensure that only the most recent entries
are transmied, not all.

An example of an asynronous integration of microservices with
Atom can be found at https://github.com/ewolff/microservice-atom.
https://github.com/ewolff/microservice-atom/blob/master/HOW-TO-
RUN.md explains in detail the necessary steps to run the example.

Atom has the advantage of being based on REST and HTTP. As
a result, no MOM must be operated. In most cases, teams already
have experiences with HTTP and web servers. us, the operations
can be ensured even with large amounts of data.

Unfortunately, this type of communication can not ensure that
an order is only received and processed by a single microservice
instance. However, if one of the microservices instances in the
example application reads a new order from the Atom feed, it
first es whether there is already an entry for this order in the
database, and it will only create an entry itself if this is not the case.
erefore, only one entry in the database is created for ea order.

It is not mandatory to use the Atom format. You can also use your
own format to make theanges available as a list and then provide
details with links. Likewise, a different feed format su as RSS¹⁹ or
JSON Feed²⁰ can be used.

Other MOMs

Of course, also other MOMs than Kaa can be used. For exam-
ple, there are JMS implementations²¹, the Java messaging service
standard (JMS²²) or implementations²³ of the AMQP²⁴ (Advanced
Messageeuing Protocol). But here themicroservices have to deal
with the fact that old events will not be available aer some time.

¹⁹http://web.resource.org/rss/1.0/spec
²⁰http://jsonfeed.org/
²¹https://en.wikipedia.org/wiki/Java_Message_Service#Provider_implementations
²²https://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
²³https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Implementations
²⁴https://www.amqp.org/

https://github.com/ewolff/microservice-atom
https://github.com/ewolff/microservice-atom/blob/master/HOW-TO-RUN.md
https://github.com/ewolff/microservice-atom/blob/master/HOW-TO-RUN.md
http://web.resource.org/rss/1.0/spec
http://jsonfeed.org/
https://en.wikipedia.org/wiki/Java_Message_Service#Provider_implementations
https://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Implementations
https://www.amqp.org/
http://web.resource.org/rss/1.0/spec
http://jsonfeed.org/
https://en.wikipedia.org/wiki/Java_Message_Service#Provider_implementations
https://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Implementations
https://www.amqp.org/

23

Conclusion

Asynronous microservices offer advantages in resilience but also
in decoupling. Kaa is an interesting alternative for asynronous
microservices because the history of the events is stored long-term.
In addition, it can also support a large number of clients, without
consuming too many resources.

An HTTP / REST based system that offers anges as an Atom feed
or in a different data format has the advantage over Kaa that it
does not need an additional server. However, it is not that easy to
send a message to a single recipient, because the protocol does not
have a direct support for this.

Experiments

• Start the Kaa example. See https://github.com/ewolff/microservice-
kafka/blob/master/HOW-TO-RUN.md.

• It is possible to start multiple instances of the shipping and in-
voicing microservice. is can be done with docker-compose

up -d --scale shipping=2 or docker-compose up -d --scale

invoicing=2. With docker logs mskafka_invoicing_2 you
can look at the logs. In the logs the microservice indicates
whi Kaa partitions it is accepting records from.

https://github.com/ewolff/microservice-kafka/blob/master/HOW-TO-RUN.md
https://github.com/ewolff/microservice-kafka/blob/master/HOW-TO-RUN.md

Concept: Synchronous
Microservices

Many microservice systems use synronous communication. is
apter shows how synronousmicroservices can be implemented
with different tenologies.

Definition

e last apter already defined synronous microservices:

A microservice is syncronous if it makes a request to
other microservices and waits for the result while itself
processing requests.

us, a synronous order microservice can request customer data
from another microservice while processing a request for an order.

Many microservice systems use synronous communication. is
apter shows how synronousmicroservices can be implemented
with different tenologies.

Why Synchronous Microservices?

e reasons for using synronous microservices are:

• Synronous microservices are easy to understand. Instead
of a local method call, functionality is called in another

26 Concept: Synronous Microservices

microservice. is is quite close to what programmers are
used to.

• Beer consistency can be aieved. For ea call the latest
information is retrieved from all other services. So the data is
up-to-date unless a last-minute ange has occurred.

But resilience is more complex: If the called microservice is cur-
rently not available, the caller must deal with the failure in a way
that ensures that it does not fail as well. For this, the caller can use
data from a cae or resort to a simplified algorithm that does not
need the information from the other microservice.

Challenges

For synronous communication someallenges have to be solved:

• A microservice typically provides its interface via TCP / IP
at a specific IP address and port. e caller must get this
information. Service discovery solves this allenge.

• For ea microservice, multiple instances can run. Load bal-
ancing must distribute the calls to all instances.

• To external users all microservices should be perceived as part
of a system and be available under one URL. Routing ensures
that calls are forwarded to the correct microservice.

• As already mentioned, resilience presents a particular al-
lenge that must also be addressed.

A tenology for implementing synronous microservices must
provide a solution to ea of these allenges.

27

Recipe: Kubernetes

Kubernetes²⁵ is becoming increasingly important as the environ-
ment for the development and operations of microservices.

Docker

Kubernetes is based on Doer²⁶. Doer makes it possible to
decouple processes from ea other in a Linux system: Doer
containers provide an operating system process with its own file
system, its own network interface, and its own IP address. Unlike
a virtual maine, however, all Doer containers use the same
Linux kernel. erefore, a Doer container consumes hardly more
ressources than a Linux process. It is easily possible to run hundreds
of Doer containers on a laptop.

File systems in Doer containers are based on Doer images. e
images contain all the files that the Doer container needs. is
can include a Linux distribution or a Java runtime environment.
Doer images have layers. e Linux distribution can be one layer
and the Java runtime environment another. All Java microservices
can share these two layers. ese layers are stored only once on the
Doer host. is significantly reduces the storage space occupied
by Doer images.

Kubernetes is a Docker Scheduler.

Running Doer containers on a single Doer host is not sufficient.
If the Doer host fails, all Doer containers will fail. In addition,
the scalability is limited by the performance of the Doer host.

To run Doer containers on a cluster of maines, there are sed-
ulers like Kubernetes. Kubernetes introduces some new concepts:

²⁵https://kubernetes.io/
²⁶https://www.docker.com/

https://kubernetes.io/
https://www.docker.com/
https://kubernetes.io/
https://www.docker.com/

28 Concept: Synronous Microservices

• Nodes are the servers Kubernetes is running on. ey are
organized in a cluster.

• Pods are multiple Doer containers that provide a service
together. is could be, for example, a container with a
microservice together with a container for log processing.

• A replica set ensures that there is always a certain number of
instances running for ea pod.

• A deployment creates a replica set and provides the required
Doer images.

• Services make pods accessible. e services are registered
under a name in the DNS and have a fixed IP address
under whi they can be contacted throughout the cluster.
In addition, the service enables the routing of requests from
the outside to a service instance.

Kubernetes Concepts

e figure illustrates all the Kubernetes concepts: A deployment
creates a replica set. e replica set does not just create the Kuber-
netes pods, but also launes new ones, in case some of the pods
fail. e pods include one or more Doer containers.

e Kubernetes service creates the DNS record and makes the
microservice available at an IP address that is unique throughout

29

the cluster. Finally, the server creates a node port. Under this port
the service can be reaed on all Kubernetes nodes. Instead of a
node port, a service can also create a load balancer. is is a load
balancer offered by the infrastructure. For example, if Kubernetes
is running in the Amazon Cloud, Kubernetes would create an
Amazon Elastic Load Balancer (ELB).

Synchronous Microservices with Kubernetes

Kubernetes solves the allenges of synronous microservices as
follows:

• For service discovery Kubernetes uses DNS. e Kubernetes
service sets up the corresponding DNS entry. Other microser-
vices can then access the service by its host name.

• Kubernetes implements load balancing at the IP level. e
Kubernetes service has an IP address. Behind the scenes,
traffic to the IP address is load balanced across all service
instances.

• Concerning routing the Kubernetes service can be imple-
mented either via the node port or via a load balancer. It
depends on how the service is configured and if the infras-
tructure offers a load balancer. An external request is either
sent to the load balancer or to the node port to rea the
microservice.

• For resilience Kubernetes has no solution. Of course, Ku-
bernetes can start additional pods in case of a failure, but
further resilience paerns like timeout or circuit breaker are
not implemented by Kubernetes.

e solutions that Kubernetes offers for the allenges of syn-
ronous microservices do not lead to any code dependencies on
Kubernetes. If a microservice invokes another, it must resolve the
name using DNS and communicate with the returned IP address.
is is no different from communicating with any other server. For

30 Concept: Synronous Microservices

routing, an external system uses a port on a Kubernetes host or a
load balancer. Even in this case, it is transparent that Kubernetes is
at work behind the scenes.

The example with Kubernetes

e example is available on GitHub²⁷. A guide²⁸ explains in detail
the necessary steps to install the soware and run the example.

e example consists of three microservices: order, customer and
catalog. Order uses catalog and customer via the REST interface. In
addition, every microservice provides some HTML pages.

In the example also an Apae web server is installed, whi
provides the users with a website to facilitate using the system.

Finally, a Hystrix dashboard is available as a separate Kubernetes
pod. e example uses the Java library Hystrix²⁹ for resilience.
Among other things, this library runs calls in a separate thread pool,
and it implements a timeout for the calls.

On a laptop, you can use Minikube³⁰ to run the example. is
Kubernetes distribution is very easy to install. However, it provides
no load balancer, so the services are only accessible over a node
port.

e script docker-build.sh creates the Doer images for the
microservices and uploads them to the public Doer hub.is step
is optional because the images are already stored on theDoer hub.

e script kubernets-deploy.sh deploys the images from the public
Doer hub. To do this, the script uses the tool kubectl. kubectl
run starts the image. e image is downloaded from the specified
URL at the Doer hub. In addition, this command defines whi
ports the Doer containers will provide. kubectl run creates the

²⁷https://github.com/ewolff/microservice-kubernetes
²⁸https://github.com/ewolff/microservice-kubernetes/HOW-TO-RUN.md
²⁹https://github.com/Netflix/Hystrix/
³⁰https://github.com/kubernetes/minikube

https://github.com/ewolff/microservice-kubernetes
https://github.com/ewolff/microservice-kubernetes/HOW-TO-RUN.md
https://github.com/Netflix/Hystrix/
https://github.com/kubernetes/minikube
https://github.com/ewolff/microservice-kubernetes
https://github.com/ewolff/microservice-kubernetes/HOW-TO-RUN.md
https://github.com/Netflix/Hystrix/
https://github.com/kubernetes/minikube

31

deployment whi constructs the replica set and thus the pods.
kubectl expose creates the service that provides accesses to the
replica set and create an IP address, a node port or load balancer
and a DNS entry.

is excerpt from kubernetes-deploy.sh shows how the tools are
used to deploy and run the catalog microservice:

1 #!/bin/sh

2 if [-z "$DOCKER_ACCOUNT"]; then

3 DOCKER_ACCOUNT=ewolff

4 fi;

5 ...

6 kubectl run catalog \\

7 --image=docker.io/$DOCKER_ACCOUNT/microservice-kubernete\

8 s-demo-catalog:latest

9 \\

10 --port=80

11 kubectl expose deployment/catalog --type="LoadBalancer" -\

12 -port 80

13 ...

Alternative Recipes: Netflix, Consul,
Cloud Foundry

In addition to Kubernetes, there are several other solutions for
synronous microservices:

• Cloud Foundry also uses Doer like Kubernetes. However,
Cloud Foundry is a PaaS (Platform as a Service). It provides
a complete platform for the application. at’s why it is not
necessary to create Doer containers. It is sufficient to just
provide a Java application.

32 Concept: Synronous Microservices

– Cloud Foundry also implements service discovery with
DNS.

– e platform implements load balancing at the network
level.

– For routing of requests from external systems it is suffi-
cient to use the DNS name of the microservice.

– Mu like Kubernetes Cloud Foundry does not really
support resilience.
e Cloud Foundry demo³¹ implements an example that
is basically identical with the Kubernetes example.ere
is a detailed guide³² on how to run the example.

• Consul is actually a service discovery tenology. However,
it can be combined with some other tenologies to provide
a complete solution for microservices.
– Consul also offers a DNS interface for service discovery.
It also has a separate interface for service discovery that
can be used to add and read the information.

– For routing Consul itself offers no solution. But Consul
Template³³ can fill out a template with information
about the microservices to create a configuration file.
For example, a web server can be configured in this way
to receive HTTP requests from the outside and send
them to the microservices. e web server reads the
configuration file provided by Consul Template. It does
not need to implement any interface to Consul.

– Load balancing can be implemented just like routing
with a web server and Consul Template. An alternative
is a Java library like Ribbon³⁴. It implements load bal-
ancing in the calling microservice.

– Resilience needs to be implemented with an additional
library.

³¹https://github.com/ewolff/microservice-cloudfoundry
³²https://github.com/ewolff/microservice-cloudfoundry/blob/master/HOW-TO-RUN.md
³³https://github.com/hashicorp/consul-template
³⁴https://github.com/Netflix/ribbon/wiki

https://github.com/ewolff/microservice-cloudfoundry
https://github.com/ewolff/microservice-cloudfoundry/blob/master/HOW-TO-RUN.md
https://github.com/hashicorp/consul-template
https://github.com/hashicorp/consul-template
https://github.com/Netflix/ribbon/wiki
https://github.com/ewolff/microservice-cloudfoundry
https://github.com/ewolff/microservice-cloudfoundry/blob/master/HOW-TO-RUN.md
https://github.com/hashicorp/consul-template
https://github.com/Netflix/ribbon/wiki

33

e Consul example³⁵ uses Spring Cloud to register the
microservices and the Ribbon library for load balancing.
Hystrix provides resilience. Apae hpd implements
routing and Consul Template configures Apae hpd.
An alternative would be Registrator³⁶. It automatically
registers Doer containers in Consul. Together with
access to Consul via DNS, Consul can be just as transpar-
ently used as Kubernetes or Cloud Foundry. e Consul
DNS example³⁷ implements this approa.

• eNetflix Sta provides a complete solution for synronous
Microservices:
– Eureka implements service discovery. It has a REST
interface, and the Eureka Java client library also imple-
ments a cae on the client.

– Ribbon is the load balancer of the Netflix sta. is is
a Java library that selects one of the service instances
registered at Eureka.

– Zuul is a proxy for routing wrien in Java. Zuul can be
supplemented with custom filters, whi can be wrien
in Java or Groovy. erefore, Zuul can be extended very
flexibly.

• For resilience the Netflix sta uses Hystrix.

e Netflix example³⁸ uses Spring Cloud to integrate the
Netflix sta into Java applications. e microservices system
implements the same scenario as the other examples for
synronous microservices.

e Kubernetes and Cloud Foundry examples have no code depen-
dencies. Su a solution can also be implemented with Consul. In
this way, themicroservice systems can easily use other tenologies
than Java. is supports tenology freedom, a major benefit of
microservices.

³⁵https://github.com/ewolff/microservice-consul/
³⁶https://github.com/gliderlabs/registrator
³⁷https://github.com/ewolff/microservice-consul-dns/
³⁸https://github.com/ewolff/microservice

https://github.com/ewolff/microservice-consul/
https://github.com/gliderlabs/registrator
https://github.com/ewolff/microservice-consul-dns/
https://github.com/ewolff/microservice-consul-dns/
https://github.com/ewolff/microservice
https://github.com/ewolff/microservice-consul/
https://github.com/gliderlabs/registrator
https://github.com/ewolff/microservice-consul-dns/
https://github.com/ewolff/microservice

34 Concept: Synronous Microservices

Conclusion

Kubernetes offers a very powerful solution for synronous mi-
croservices that also covers the operations of microservices. PaaS
like Cloud Foundry provide a higher level of abstraction, thus the
user does not have to deal with Doer. But both, Kubernetes and
Cloud Foundry, force users to run a different runtime environment.
It is not possible to sti to bare metal or virtual systems, instead
Kubernetes or a PaaS like Cloud Foundry must be used. is is
not the case with Consul and Netflix: Both systems can be used
with Doer containers as well as with virtual maines or physical
servers. Of those two, Consul offers a lot more features.

Experiments

• Start the Kubernetes example as described in the guide³⁹.

– Open the Apae hpd website with minikube service

apache.
– Open the Kubernetes dashboardwith minikube dashboard.

• Test the load balancing in the example:

– kubectl scale anges the number of pods in a replica
set. kubectl scale -h shows the options of the com-
mand. For example, scale the replica set catalog.

– kubectl get deployments shows how many pods are
running in ea deployment.

³⁹https://github.com/ewolff/microservice-kubernetes/blob/master/HOW-TO-RUN.md

https://github.com/ewolff/microservice-kubernetes/blob/master/HOW-TO-RUN.md
https://github.com/ewolff/microservice-kubernetes/blob/master/HOW-TO-RUN.md

What next?
is booklet can only provide a brief introduction to microservices.

e bookMicroservices - A Practical Guide⁴⁰ contains a detailed de-
scription of the examples in this broure. In addition, it contains an
introduction to microservices and an overview of tenologies for
the monitoring of microservices. ere is also a German version⁴¹.

e book Microservices⁴² describes the motivation, aritecture,
and concepts of microservices. ere is also a German version⁴³.

Finally, the free Microservices Primer⁴⁴ provides an overview of the
basic motivation and aritecture of microservices. ere is also a
German version⁴⁵.

⁴⁰http://practical-microservices.com/
⁴¹http://microservices-praxisbuch.de/
⁴²http://microservices-book.com/
⁴³http://microservices-buch.de/
⁴⁴http://microservices-book.com/primer.html
⁴⁵http://microservices-buch.de/ueberblick.html

http://practical-microservices.com/
http://microservices-praxisbuch.de/
http://microservices-book.com/
http://microservices-buch.de/
http://microservices-book.com/primer.html
http://microservices-buch.de/ueberblick.html
http://practical-microservices.com/
http://microservices-praxisbuch.de/
http://microservices-book.com/
http://microservices-buch.de/
http://microservices-book.com/primer.html
http://microservices-buch.de/ueberblick.html

	Table of Contents
	Introduction
	Acknowledgement

	Basics: Microservices
	Independent Systems Architecture (ISA) Principles
	Terms
	Principles
	Reasons
	Self-contained Systems
	Conclusion & Outlook

	Concept: Frontend Integration
	Why Frontend Integration?
	Recipe: ESI (Edge Side Includes)
	Alternative Recipes: Links and JavaScript
	Conclusion
	Experiments

	Concept: Asynchronous Microservices
	Definition
	Why Asynchronous Microservices?
	Recipe: Messaging with Kafka
	Alternative Recipe: REST with Atom
	Conclusion
	Experiments

	Concept: Synchronous Microservices
	Definition
	Why Synchronous Microservices?
	Challenges
	Recipe: Kubernetes
	Alternative Recipes: Netflix, Consul, Cloud Foundry
	Conclusion
	Experiments

	What next?
	Leere Seite

